ი. ჯავახიშვილის თბილისის სახელმწიფო უნივერსიტეტი ზუსტი და საბუნებისმეტყველო მეცნიერებათა ფაკულტეტი

ინტერდისციპლინური (მათემატიკა, კომპიუტერული მეცნიერებები) ქვემიმართულება: მათემატიკური ლოგიკა და დისკრეტული სტრუქტურები

საფაკულტეტო კონფერენცია 2017

რევაზ გრიგოლია , ანტონიო დი ნოლა, ჯაკომო ლენცი

EL_P ლოგიკის ამოხსნადობა

Ivane Javakhishvili Tbilisi State University

Faculty of exact and Natural Sciences 2017

Decidability of the Logic *EŁ_{<i>P*}

Revaz Grigolia, Antonio Di Nola, Giacomo Lenzi

ABSTRACT

The new modal epistemic Łukasiewicz logic E_{ℓ_p} is introduced, obtained from the infinitely valued Łukasiewicz logic ℓ_p by adding one axiom of the logic ℓ_p of perfect *MV*-algebras, the language of which is enriched by "quasi knowledge operator" with corresponding axioms.

It is proved that the set of theorems of the logic E_{P}^{k} is recursively enumerable.

აბსტრაქტი

შემოღებულია ახალი მოდალური ეპისტემიკური ლუკასევიჩის ლოგიკა *EŁ_p*, რომელიც მიღებულია *Ł* ლუკასევიჩის უსასრულო ნიშნა ლოგიკისგან სრულყოფილი *MV*-ალგებრის *Ł_p* ლოგიკისგან ერთი აქსიომის დამატებით, რომლის ენა გამდიდრებულია კვაზი-ცოდნის ოპერატორით შესაბამისი აქსიომებით.

დამტკიცებულია, რომ EŁ_P ლოგიკის თეორემათა სიმრავლე რეკურსიულად გადათვლადია. The finitely valued propositional calculi, which have been described by Łukasiewicz and Tarski in 1930, are extended to the corresponding predicate calculi.

The predicate Łukasiewicz (infinitely valued) logic *QL* is defined in standard way.

Monadic MV-algebras

Monadic *MV*-algebras were introduced and studied by Rutledge in

J.D. Rutledge, A preliminary investigation of the infinitely many-valued predicate calculus, Ph.D. Thesis, Cornell University, 1959.

as an algebraic model for the predicate calculus *QL* of Łukasiewicz infinite valued logic, in which only a single individual variable occurs.

Monadic Logic

Let *L* denote a first-order language based on \cdot , +, \rightarrow , \neg , \exists and let L_m denote a propositional language based on \cdot , +, \rightarrow , \neg , \exists . Let Form(*L*) and Form(L_m) be the set of all formulas of *L* and L_m , respectively.

We fix a variable x in L, associate with each propositional letter p in L_m a unique monadic predicate p*(x) in L and denote by induction a translation

 Ψ : Form(L) \rightarrow Form(L_m) by putting:

- $\Psi(p) = p*(x)$ if p is propositional variable,
- $\Psi(\alpha \Box \beta) = \Psi(\alpha) \Box \Psi(\beta)$, where $\Box \in \{\cdot, +, \rightarrow\}$,
- $\Psi(\exists \alpha) = \exists x \ \Psi(\alpha).$

An MV-algebra is an algebra

$$\mathsf{A}=(A,\oplus,\otimes,*,0,1)$$

where $(A, \oplus, 0)$ is an *abelian monoid*, and for all $x, y \in A$ the following identities hold: $x \oplus 1 = 1, x^{**} = x,$ $(x^* \oplus y)^* \oplus y = (x \oplus y^*)^* \oplus x,$ $x \otimes y = (x^* \oplus y^*)^*.$ It is well known that the *MV*-algebra $S = ([0, 1], \oplus, \otimes, *, 0, 1)$, where $x \oplus y =$ $min(1, x+y), x \otimes y = max(0, x+y -1), x^* = 1-x,$ generates the variety **MV** of all *MV*-algebras.

Let Q denote the set of rational numbers, for $(0 \neq) n \in \omega$ we set $S_n = (S_n, \bigoplus, \otimes, *, 0, 1)$, where $S_n = \{0, 1/n-1, ..., n-2/n-1, 1\}$ is also MValgebra.

Perfect MV-algebras

From the variety of *MV*-algebras **MV** select the subvariety **MV(C)** which is defined by the following identity:

(Perf)
$$2(x^2) = (2x)^2$$
,

that is **MV(C)** = **MV**+ (Perf).

Perfect MV-algebras

 \mathcal{L}_{p} is the logic corresponding to the variety generated by perfect *MV*-algebras which coincides with the set of all Łukasiewicz formulas that are valid in all perfect *MV*-chains, or equivalently that are valid in the *MV*-algebra *C*. Actually, \mathcal{L}_{p} is the logic obtained by adding to the axioms of Łukasiewicz sentential calculus the following axiom:

 $\mathtt{k}_{\mathsf{P}}: \ (\alpha \underline{\vee} \alpha) \& (\alpha \underline{\vee} \alpha) \leftrightarrow (\alpha \& \alpha) \underline{\vee} (\alpha \& \alpha)$

Logic L_P

Theorem. A formula of the logic L_p is a theorem iff it is 1-tautology in the algebra C.

Monadic MV-algebras

An algebra $A = (A, \oplus, \otimes, *, \exists, 0, 1)$ (also denoted as (A, \exists)) is said to be *a monadic MV-algebra* (for short *MMV*-algebra) [**A.Di Nola, R.Grigolia**] if $(A, \oplus, \otimes, *, 0, 1)$ is an *MV*-algebra and in addition \exists satisfies the following identities:

- E1. $x \leq \exists x$,
- E2. $\exists (x \lor y) = \exists x \lor \exists y$,
- E3. $\exists (\exists x)^* = (\exists x)^*$,
- E4. $\exists (\exists x \oplus \exists y) = \exists x \oplus \exists y,$
- E5. $\exists (x \otimes x) = \exists x \otimes \exists x,$
- E6. $\exists (x \oplus x) = \exists x \oplus \exists x$.

Łukasiewicz logic

The original system of axioms for propositional infinite-valued Łukasiewicz logic used implication and negation as the primitive connectives as for classical logic:

L1.
$$(\alpha \rightarrow (\beta \rightarrow \alpha))$$

L2. $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$
L3. $((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha)$
L4. $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$.

There is only one inference rule - Modus Ponens: from α and ($\alpha \rightarrow \beta$) infer β .

Łukasiewicz logic

Theorem 2. [Chang]. (Completeness theorem).
 A Lukasiewicz formula α is a theorem iff α is a tautology.

 \mathcal{L}_{P} is the logic obtained by adding to the axioms of Łukasiewicz sentential calculus the following axiom:

 $\mathtt{k}_{\mathsf{P}}: \ (\alpha \underline{\vee} \alpha) \& (\alpha \underline{\vee} \alpha) \leftrightarrow (\alpha \& \alpha) \underline{\vee} (\alpha \& \alpha)$

Monadic Łukasiewicz Logic MŁ

Monadic Łukasiewicz propositional calculus *MŁ* as a logic which contains Lukasiewicz propositional calculus *Ł*, the formulas as the axiom schemas:

M1. $\Box^{q}\phi \rightarrow \phi$, M2. $\Box^{q}(\phi \land \psi) \leftrightarrow \Box^{q}\phi \land \Box^{q}\psi$, M3. $\Box^{q}(\neg \Box^{q}\phi) \leftrightarrow \neg \Box^{q}\phi$, M4. $\Box^{q}(\Box^{q}\phi \& \Box^{q}\psi) \leftrightarrow \Box^{q}\phi \& \Box^{q}\psi$, M5. $\Box^{q}(\phi \& \phi) \leftrightarrow \Box^{q}\phi \& \Box^{q}\phi$, M6. $\Box^{q}(\phi \lor \phi) \leftrightarrow \Box^{q}\phi \lor \Box^{q}\phi$,

inference rules: $\phi, \phi \rightarrow \psi/\psi, \phi / \Box^{q}\phi$.

Monadic Łukasiewicz Logic *MŁ*

 Theorem 3. [Rutleddge; Di Nola, Grigolia]. A modal formula φ is a theorem of MŁ if it is a tautology Modal Epistemic Lukasiewicz logic E_{P}^{k} is a logic which contains monadic kukasiewicz propositional calculus M_{k}^{k} and the formula as the axiom scheme:

 $\mathtt{k}_{\mathtt{P}}: \ (\alpha \underline{\vee} \alpha) \& (\alpha \underline{\vee} \alpha) \leftrightarrow (\alpha \& \alpha) \underline{\vee} (\alpha \& \alpha)$

Logic E_P

Theorem 4. A formula φ of E_P^{k} is a theorem if it is a tautology.

Decidability of EŁ_P

In the sequel *Form(L)* denotes the set of all formulas of the logic *L* and *Th(L)* the set of all theorems of the logic L.

A set X is called *recursive* (or *decidable*) if there is an algorithm which, given an object x from the class under consideration, recognizes whether

 $x \in X$ or not. X is said to be *recursively enumerable* if one of the following equivalent conditions is satisfied:

X is the domain of a partial recursive function;
 X is either the range of a total recursive function or empty.

Proposition 1. Suppose Y is a recursive set and $X \subset Y$. Then X is recursive iff both X and Y - X are recursively enumerable.

Proposition 1. Suppose Y is a recursive set and $X \subset Y$. Then X is recursive iff both X and Y - X are recursively enumerable.

Proposition 2. [Chagrov and Zakharyaschev].
(1) Form(L) is recursively enumerable (without repetitions). Moreover, these sets are recursive.
(2) The set Th(L) of theorems of a logic L with a recursively enumerable set of axioms is also recursively enumerable.

Decidability of EŁ_P

- **Proposition 3.** (Craig's theorem) For every logic L the following conditions are equivalent:
- (i) L has a recursively enumerable set of axioms;
- (ii) *L* has a recursive set of axioms;
- (iii) *Th(L)* is recursively enumerable.

Proposition 4. [Chagrov and Zakharyaschev]. If theorems of a logic L is characterized by a recursively enumerable class C of recursive algebras then the set of formulas that are not theorems in L is also recursively enumerable. **Proposition 4.** [Chagrov and Zakharyaschev]. If theorems of a logic L is characterized by a recursively enumerable class C of recursive algebras then the set of formulas that are not theorems in L is also recursively enumerable.

Proposition 5. [Chagrov and Zakharyaschev]. A logic is decidable if it is recursively axiomatizable and charcharacterized by a recursively enumerable class of recursive algebras. **Theorem 5**. The logic E_{P}^{k} is recursively axiomatizable and charcharacterized by a recursively enumerable class of recursive algebras

Decidability of EŁ_P

Theorem 5. The logic E_P is decidable.

THANK YOU