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Functions in Haskell are pure functions that take all their input as arguments and produce all 

their output as results. However, many programs require some form of side effect that would 

appear to be at odds with purity, such as reading input from the keyboard, or writing output to 

the screen, while the program is running. Haskell provides a uniform framework for handling 

effects without compromising the purity of functions, based upon the mathematical notion of a 

monad (for Haskell) and Computational Workflows (for  F#). 
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