For a fixed T > 0 we consider the stochastic process $(X_t)_{t \ge 0}$ that satisfies

$$X_t = X_0 + \int_0^t b(X_s) ds + f(t) + W_t, \ t \in [0, T],$$

Where $(W_t)_{t \in [0,T]}$ is a standard one-dimensional Brownian motion defined on some $(\Omega, \mathfrak{F}_t, \mathbb{P})$ filtered probability space, $f \in C^1[0,T]$ such that f(0) = 0, and $b: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous such that

$$|b(x)| \le M(|x|+1),$$
 $|b(x)+b(x)| \le K|x-y|, \ \forall x, y \in R,$

For some constants M, K. Here $C^1([0,T])$ denotes the space of real-valued continuously differentiable functions equipped with the usual norm $\|.\|_{C^1([0,T])}$. ν is a distribution of X_0 .

Consider 1 as a threshold, we moreover suppose that $X_0 < 1$ and define the stopping time

$$\tau = \inf \{t > 0 \colon X_{t \wedge T} \ge 1\}$$

To be the first time that X_t reaches the level 1. For a given ν we are interested in two related densities

$$\mathfrak{p}^{\nu}(t) = \frac{d}{dt} \mathfrak{p}^{\nu}(\tau \le t), \qquad t \in [0, T],$$

i.e. the density of τ , and

$$p^{\nu}(t, y) = \frac{d}{dt} \mathbb{P}^{\nu}(X_t \le y, t < \tau), \ t \in [0, T], \ y \in (-\infty, 1]$$